- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Huang, Shu-Wei (2)
-
Li, Bowen (2)
-
Prakash, Neeraj (2)
-
Musgrave, Jonathan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The fiber single-cavity dual-comb laser (SCDCL) is an emerging light-source architecture that opens up the possibility for low-complexity dual-comb pump-probe measurements. However, the fundamental trade-off between measurement speed and time resolution remains a hurdle for the widespread use of fiber SCDCLs in dual-comb pump-probe measurements. In this paper, we break this fundamental trade-off by devising an all-optical dynamic repetition rate difference (Δfrep) modulation technique. We demonstrate the dynamic Δfrepmodulation in a modified version of the recently developed counterpropagating all-normal dispersion (CANDi) fiber laser. We verify that our all-optical dynamic Δfrepmodulation technique does not introduce excessive relative timing jitter. In addition, the dynamic modulation mechanism is studied and validated both theoretically and experimentally. As a proof-of-principle experiment, we apply this so-called dynamic CANDi (DCANDi) fiber laser to measure the relaxation time of a semiconductor saturable absorber mirror, achieving a measurement speed and duty cycle enhancement factor of 143. DCANDi fiber laser is a promising light source for low-complexity, high-speed, high-sensitivity ultrafast dual-comb pump-probe measurements.more » « less
-
Prakash, Neeraj; Huang, Shu-Wei; Li, Bowen (, Optica)The counterpropagating all-normal dispersion (CANDi) fiber laser is an emerging high-energy single-cavity dual-comb laser source. Its relative timing jitter (RTJ), a critical parameter for dual-comb timing precision and spectral resolution, has not been comprehensively investigated. In this paper, we enhance the state-of-the-art CANDi fiber laser pulse energy from 1 nJ to 8 nJ. We then introduce a reference-free RTJ characterization technique that provides shot-to-shot measurement capability at femtosecond precision. The measurement noise floor reaches , and the corresponding integrated measurement precision is only 1.8 fs (1 kHz, 20 MHz). With this characterization tool, we are able to study the physical origin of the CANDi laser’s RTJ in detail. We first verify that the cavity length fluctuation does not contribute to the RTJ. Then we measure the integrated RTJ to be 39 fs (1 kHz, 20 MHz) and identify the pump relative intensity noise (RIN) to be the dominant factor responsible for it. In particular, pump RIN is coupled to the RTJ through the Gordon–Haus effect. Finally, solutions to reduce the free-running CANDi laser’s RTJ are discussed. This work provides a general guideline to improve the performance of compact single-cavity dual-comb systems such as the CANDi laser, benefitting various dual-comb applications.more » « less
An official website of the United States government
